Elliptic Curves, Rank in Families and Random Matrices
نویسنده
چکیده
This survey paper contains two parts. The first one is a written version of a lecture given at the “Random Matrix Theory and L-functions” workshop organized at the Newton Institute in July 2004. This was meant as a very concrete and down to earth introduction to elliptic curves with some description of how random matrices become a tool for the (conjectural) understanding of the rank of MordellWeil groups by means of the Birch and Swinnerton-Dyer Conjecture; the reader already acquainted with the basics of the theory of elliptic curves can certainly skip it. The second part was originally the write-up of a lecture given for a workshop on the Birch and Swinnerton-Dyer Conjecture itself, in November 2003 at Princeton University, dealing with what is known and expected about the variation of the rank in families of elliptic curves. Thus it is also a natural continuation of the first part. In comparison with the original text and in accordance with the focus of the first part, more details about the input and confirmations of Random Matrix Theory have been added.
منابع مشابه
The derivative of SO(2N + 1) characteristic polynomials and rank 3 elliptic curves
Here we calculate the value distribution of the first derivative of characteristic polynomials of matrices from SO(2N + 1) at the point 1, the symmetry point on the unit circle of the eigenvalues of these matrices. The connection between the values of random matrix characteristic polynomials and values of the L-functions of families of elliptic curves implies that this calculation in random mat...
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملOn the Elliptic Curves of the Form $y^2 = x^3 − pqx$
By the Mordell- Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves, where p and q are distinct primes. We give infinite families of elliptic curves of the form y2=x3-pqx with rank two, three and four, assuming a conjecture of Schinzel ...
متن کاملDerivatives of random matrix characteristic polynomials with applications to elliptic curves
The value distribution of derivatives of characteristic polynomials of matrices from SO(N) is calculated at the point 1, the symmetry point on the unit circle of the eigenvalues of these matrices. We consider subsets of matrices from SO(N) that are constrained to have n eigenvalues equal to 1, and investigate the first non-zero derivative of the characteristic polynomial at that point. The conn...
متن کاملOn the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کامل